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Simple constructions for deformation in transpression/transtension zones 
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Abstract--A simple geometrical construction is demonstrated for determining the orientations of the principal 
axes of the infinitesimal strain ellipsoid in tectonic zones where boundaries obliquely converge or diverge. The 
construction may also be used to determine the relative magnitudes of the principal axes and the ellipsoid shape, 
for infinitesimal and finite transpressional/transtensional strains. The analysis leads to a tightening of the 
definitions of the loosely used terms, compression, wrench, and extension. Applications of the simple construc- 
tion and convenient graphical solution are illustrated by brief examples, 

INTRODUCTION 

THE RECOGNmON of the importance of oblique con- 
vergence and divergence of tectonic zones (transpres- 
sion and transtension, Harland 1971) has been analysed 
by Sanderson & Marchini (1984). The objective of this 
short paper is to show how a simple geometrical con- 
struction, based on a modified Sanderson & Marchini 
model, permits the rapid determination of the orien- 
tations of the principal axes of the infinitesimal (or for 
practical purposes, small) strain ellipsoid. A simple 
graphical solution is also presented which enables the 
relative magnitudes of the axes and ellipsoid shape to be 
found for infinitesimal and finite strains where volume is 
conserved. 

To simplify the discussion, and to emphasize its practi- 
cal significance, the model is first presented in geometri- 
cal form, and some applications are discussed. A math- 
ematical derivation of the construction is given in the 
Appendix. 

GEOMETRICAL CONSTRUCTIONS 

Method A: determination of  the orientation of  principal 
axes 

If the direction of zone boundary displacement (S_) is 
known then the orientations of the principal axes of the 
infinitesimal sectional strain ellipse may be determined 
according to the construction illustrated in Fig. 1 as 
follows. 

(i) Draw the zone boundaries (or boundary) in such an 
orientation that S, the displacement vector points up the 
page. 

(ii) Draw a circle, centred on the zone boundary. The 
radius is arbitrary, although half the normal separation 
places the constructed principal axes in the centre of the 
zone. 

(iii) Construct a line normal to the zone boundary 
from the centre of the circle. 

(iv) Identify the two points at the top and base of the 
circle which lie on a vertical diameter, i.e. parallel to _S. 

(v) Project lines from the top and base of the circle 
through the intersection of the circle and the zone 
normal. The line from the top of the circle parallels the 
maximum principal axis of the infinitesimal sectional 
strain ellipse and that from the base parallels the 
minimum axis. 

Method B: determination of  the orientation of  zone 
boundary displacement vectors 

If the orientations of the maximum and/or minimum 
principal axes of the infinitesimal sectional strain ellipse 
can be inferred from first increment structures, e.g. 
tension gashes, stylolites, late folds and faults, etc. then 
the orientation of the zone displacement vectors may be 
determined as follows. 

(i) Draw a circle, of arbitrary radius, centred on the 
zone boundary. 

(ii) Project a line normal to the zone from the centre 
of the circle. 

(iii) Draw lines parallel to the maximum and minimum 
principal axes of the infinitesimal sectional strain ellipse, 
so that their intersection coincides with that of the circle 
and the zone normal. 

a b 

Fig. 1. A geometrical construction for (a) transpression and (b) trans- 
tension, which facilitates the identification of the orientations of the 
maximum and minimum principal axes of the infinitesimal sectional 

strain ellipse. 
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(iv) Project the maximum and minimum axes so that 
they intersect the circle, and draw a line between these 
intersections, through the circle's centre. This line paral- 
lels the displacement vector. The vector sense is from 
the intersection with the minimum axis towards that with 
the maximum axis. 

GRAPHICAL SOLUTIONS FOR RELATIVE 
MAGNITUDES OF PRINCIPAL AXES 

The relative magnitudes of the principal axes of the 
infinitesimal strain ellipsoid formed in the constant vol- 
ume transpression/transtension model of Sanderson & 
Marchini (1984) can also be determined through the 
geometrical construction of Fig. 1. This is achieved by 
measuring the angle, (A) between S and the zone nor- 
mal. The infinitesimal relative magnitudes and ellipsoid 
shapes are a function of A and are outlined in Table 1 
and Fig. 2(a). Knowing the relative magnitudes of the 
principal axes is important as they permit the tectonic 
regime in which they formed to be identified. 

The nomenclature adopted in Table 1, where possible 
follows conventional schemes. The recognition of eight 
precise values of A, which bound distinctly different 
regimes (A = 0, 180 °, and the sinistral and dextral 
systems where A = 70.5, 90,109.5 °) facilitates a tighten- 
ing of the definition of vague terms such as compression, 
wrench, and extension. The adjective 'plane' is used to 
imply plane strain. The adjective 'general '  is adopted to 
distinguish the three terms compression, wrench and 
extension from their vague common interpretation. 
General  compression, wrench, and extension regimes 

are defined by the vertical orientations of the maximum, 
intermediate and minimum principal stretches respec- 
tively (cf. classification by Anderson (1951) with princi- 
pal stresses). 'Axially symmetric' is preferred to 'uni- 
axial' as the deformation in these orientations is triaxial. 

The critical angles and fields, detailed in Table 1, can 
be extended to finite strains, since the eight critical 
angles remain fairly stable with increasing strain 
(Fig. 2b). Four of the boundaries A = 0, 180 ° and the 
sinistral and dextral systems where A = 90 °, remain 
fixed for all finite strains. The other four, where A = 
70.5 ° (axially symmetric transpression or ASTP) and 
109.5 ° (axially symmetric transtension or ASTT) ,  mi- 
grate slowly towards 90 ° with increasing strain, (Fig. 2b). 
During constant volume zonal strains the fields of finite 
general compression and extension expand from their 
infinitesimal limits and that of general wrench contracts. 
This has two important consequences. First, for a con- 
stant direction of displacement A is fixed; thus only 
within the regime of infinitesimal general wrench (70.5 ° 
< A < 109.5 °) can the relative magnitudes of finite and 
infinitesimal principal axes differ• This will only occur at 
fairly high strains except where A is very close to its 
critical values. Secondly, this stability of strain regime 
suggests that if axes swapping occurs in zones, it is more 
likely to be a result of changes in displacement direction 
at the zone boundary than due to progressive strain• 

APPLICATIONS 

Some applications of the construction in Fig. 1 and the 
graphical solution for determining deformation charac- 
teristics (Fig. 2) are illustrated by way of short examples. 
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Fig. 2. A graphical solution for determining the characteristics of 
(a) the infinitesimal strain ellipsoid and (b & a) the finite ellipsoid. The 
orientations where axially symmetric transpression and transtension 
occur are shown by ASTP and AsTr, respectively, av is the vertical 
principal quadratic elongation. At > A2 are the horizontal principal 

strains, em~, is the maximum finite extension. 

Table 1. The relative magnitudes, implied tectonic regimes, and 
ellipsoid shapes for given values of A, as S ~ 0, in a vertical tectonic 

zone 

Relative Tectonic Ellipsoid 
A magnitudes regimes shape 

Acute see b e lo w  Transpression Oblate 
Obtuse see b e lo w  Transtension Prolate 

0 A v > A 1 = 1 > A 2 P l a n e  P l a n a r  

Compression 
0<A<70.5 ° Av>A~>I>A2 General Oblate 

Compression 
70.50* Av = At > 1 > A 2 ASTP AS Oblate 
70.5 ° < A < 90 ° At > A~ > 1 > A 2 General Oblate 

Wrench 
(c-field) 

900 A1 > Av = 1 > A2 Plane Planar 
Wrench 

90 ° < A < 109.5 ° Az > 1 > Av > A2 General Prolate 
Wrench 
(e-field) 

109.5 ° * At > 1 > A2 = A~ ASTI" AS Prolate 
109.5 ° < A < 180 ° A l > 1 > A 2 > Av General Prolate 

Extension 
180 ° At > A2 = 1 > Av Plane Planar 

Extension 

* Denotes the angles whose tangents are +2 V~. AS, TP, Tr, c & e 
are abbreviations for; axially symmetric, transpression, transtension, 
compressional and extensional, respectively. 



Constructions for transpression/transtension zones 717 

M 

$ 

n 

1'S 
w 

" L  

Ts 

f l  n 

Fig. 4. A tract of crust between two major  rift zones (a) and constructed 
orientations of the minimum and maximum principal axes of the 

infinitesimal sectional strain ellipse (b). 

Fig. 3. A shear zone with sigmoidal tension gashes and identified 
orientations of the minimum and maximum principal axes of the 
infinitesimal sectional strain ellipse (a) and constructed zone displace- 

ment  vector (b). 

Example 1 

Fig. 2(a), because for all values of the maximum finite 
extension (emax) in the zone with A = 140 ° the infinitesi- 
mal general extension produces finite general extension 
(Fig. 2b). 

Consider a shear zone with sigmoidal tension gashes 
(Fig. 3a). By assuming that the relatively undilated and 
unrotated ends of fractures parallel the orientation of 
the minimum principal axis of the infinitesimal sectional 
strain ellipse, Method B can be used to find the zone 
boundary displacement vector, (Fig. 3b). For further 
discussion of the evolution of extension fissures in shear 
zones see Ramsay & Huber (1983) where the special 
case of simple shear (A = 90 °) is described in detail. 

In this type of structure dilation may have occurred 
producing sectional area change probably without sig- 
nificant length change out of the page. Volume is not 
conserved in this shear zone; thus attempts to determine 
the relative magnitudes of the principal axes of the strain 
ellipsoid would be inappropriate. 

Example 2 

Consider a large tract of the upper crust between two 
major, en echelon rift zones; for example, between the 
Rhine and Bresse grabens (Fig. 4a). If it is assumed that 
the two major rifts open perpendicular to their boundary 
fault zones then by using Method A the orientations of 
the principal axes of the infinitesimal horizontal strain 
(or stress) ellipse may be predicted (Fig. 4(b)). 

Furthermore if volume is taken to be conserved then 
by measuring the angle A, between S and the zone 
normal (140 ° in this example), the relative magnitudes of 
the infinitesimal strain ellipsoid may be determined 
using Fig. 2(a). In this case the infinitesimal strain is 
transtensional and thus the ellipsoid is prolate in shape. 
The tract is undergoing general extension. The orienta- 
tions of the finite strain axes are indeterminable by the 
constructions presented. However their relative mag- 
nitudes, and ellipsoid shape may be found from 

Example 3 

Consider folds developing in a lateral tip zone (Cow- 
ard & Potts 1983). If the displacement vector for the 
thrust sheet can be ascertained (Fig. 5a), then using 
Method A, the orientations of the principal axes of the 
infinitesimal horizontal strain ellipse in the lateral tip 
zone may be predicted (Fig. 5b). Fold axes might be 
expected to initiate parallel to the maximum principal 
axis. In this example A = 80 °. Therefore, from Fig. 2(a) 
the infinitesimal strain is transpressional, and the ellip- 
soid is oblate in shape. The zone is undergoing general 
wrench (in the compressional field) and from Fig. 2(b) 
the finite strain ellipsoid will have the same characteris- 
tics if it can be shown that ema x < 500%. If ema x > 500% 
then the deformation will result in finite general com- 
pression, i.e. the maximum finite stretch is vertical 
despite the maximum infinitesimal stretch being hori- 
zontal. 
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Fig. 5. A lateral tip zone to a major  thrust (a) and constructed 
orientations of the minimum and maximum principal axes of the 

infinitesimal sectional strain ellipse (b). 
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CONCLUSIONS 

A simple geometrical construction (Fig. 1) allows the 
rapid determination of the orientations of the principal 
axes of the infinitesimal strain (or stress) ellipsoid 
formed between obliquely converging or diverging tec- 
tonic boundaries. So simple is the construction that it 
can (at the expense of some accuracy) be drawn free 
hand in field notebooks. The graphical solution (Fig. 2) 
for determining infinitesimal and finite deformation 
characteristics is also more simple than existing complex 
multi- variable plots making its immediate use a practical 
reality for the geologist in the field or at his desk. 
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Fig. 6. A zone with boundaries tangential to a circle and parallel with 
_S (to prevent lateral extrusion), showing the transformation of a unit 
square by stretch (a -1) across the zone and shear (3', where y = tan ~) 
parallel to the zone. The circle, vector S_ and the zone boundary 

(parallel to x) are equivalent to those in Fig. 1. 

REFERENCES 

Anderson, E. M. 1951. The Dynamics of Faulting. Oliver & Boyd, 
Edinburgh. 

Coward, M. P. & Potts, G. J. 1983. Complex strain patterns developed 
at the frontal and lateral tips to shear zones and thrust zones. J. 
Struct. Geol. 5,383-399. 

Harland, W. B. 1971. Tectonic transpression in Caledonian 
Spitzbergen. Geol. Mag. 108, 27-42. 

Ramsay, J. G. & Huber, M. I. 1983. The Techniques of Modern 
Structural Geology. Volume 1: Strain Analysis. Academic Press, 
London. 

Sanderson, D. J. & Marchini, W. R. D. 1984. Transpression. J. Struct. 
Geol. 6,449-458. 

APPENDIX 

Assumptions 

(i) In the triaxial strain analysis volume is conserved. 
(ii) Lateral extrusion or intrusion of material from or into the 

tectonic zone is prohibited. 
(iii) Material is allowed to thicken and thin vertically. 
Consider the trend of a planar vertical zone boundary as a tangent to 

a horizontal circle, its position being fixed by the angle, A, between the 
zone's displacement vector, S, and the normal to the zone. If the zone 
has unit width, and its tangential boundary is displaced, S, then by 
considering the deformation of a unit square in the zone, the geometri- 
cal relationships of Fig. 6 can be derived. From Fig. 6, expressions for 
a - '  and -/can be derived in terms of IS[ (or S) and A as follows, where 
stretch (a - t )  across the zone is simply the ratio of the deformed to 
original width of the zone, 

O/-1 = 1 -- S cos A. (1) 

The shear strain parallel to the zone (3') is given by 

3' = tan $ = (S sin A)/(1 - S cos A). (2) 

Following assumptions 1, 2 & 3, from Sanderson & Marchini (1984) 
the triaxial deformation D is given by 

I 
1 a-t3'  ! 

D =  0 a - t  . (3) 
0 0 

From equation (3) the principal quadratic elongations and their orien- 
tations can be found in terms of a and 7 and hence in terms of S and A. 
(See, for example, Ramsay & Huber 1983 Appendix B for discussion.) 
This yields 

Al or A2 = p/2 + 1/2 ( p 2  _ 4q2)1/2 (4a) 

w h e r e p =  1 +  a-23' 2 +  a -2 and q =  a -1 (4b&c)  

,~v = a 2 (5) 

tan 20' = 2 ¢ ( ~ :  + 3': - 1). (6) 

The geometrical construction 

The construction of Fig. 1 in the text assumes that the acute angle 
between the zone boundary (x-axis) and the maximum axis of the 
infinitesimal sectional ellipse is A/2. This is proved t ° be the case by 
rewriting (6) in terms of S and A (from 1 & 2), and letting S ~ 0. 

The graphical solution 

Numerical substitution in equations 4 & 5 for given values of S and 
A permits the identification of the deformation-type limits, for differ- 
ent finite strains and boundary orientations. In the limiting case as S 
0, the critical location angles (A' )  for ASTP and ASTT are arctan (+2 
V~). This can be demonstrated by defining 3' in terms of a for the 
special case of axially symmetric strains 

= a  4 - a 2 +  a -2-  1. (7) 
By substituting (7) in (6) 

lira tan A '  = lira tan A '  -- lim 2(a4 - a2 + a - :  - 1) 1~ s-.0 a~l a~l a 4 + a -2 - 2 

= __ 2 v ~ .  (8) 


